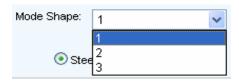

www.webcivil.com/vortexshedding2.aspx

Features:

- 1. for structures with variable cross sections along the shaft
- 2. Considering several vibrating frequencies and mode shapes
- 3. with inverse interation of finite element method, three mode shapes are available

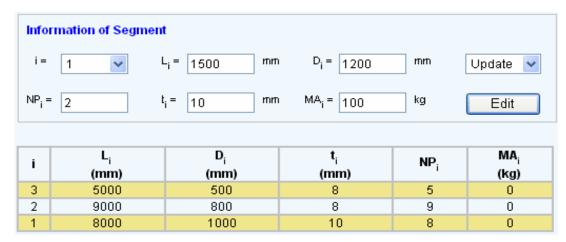
$$[K] \cdot [\phi] = \omega^2 \cdot [M] [\phi]$$

Instruction:


1. Input of General Information

General Information													
D ₀ = 1000	mm q ₀ = 0.4 kPa												
Cross Section:	Circular	,											
Location:	Open Country with Scattered Trees												
Terrain Topology	Agricultural areas with few houses and winc 🕶												
Mode Shape:	1												
⊙ Stee	el Oconcrete												

D₀ - diameter at the base


 $\ensuremath{q_0}$ - basic wind pressure

Mode Shape:

Three mode shapes are available

2. Input of Segments

L_i - length of the segment

D_i - diameter at the top of the segment

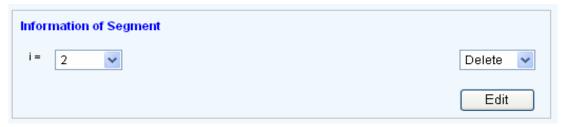
NP_i - additional points inside the segment, with these points, you can get accurate profile of mode shape (assume: points at equal spaces)

t_i - thickness of the segment

MA_i - additional mass at the top of the segment

Add One Segment

- 1). Select item 4 as added
- 2). Select "Add" from the list



3). Click button "Edit"

item 4 is added

Delete Existing Segment

- 1). Select item 2 as deleted
- 2). Select "Delete" from the list

3). Click button "Edit"

item 2 is deleted

Update Existing Segment

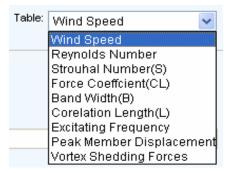
- 1). Select item 1 as updated
- 2). Select "Update" from the list

3). Click button "Edit"

item 1 is updated

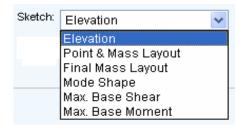
3. Review Report

Click button "Apply"

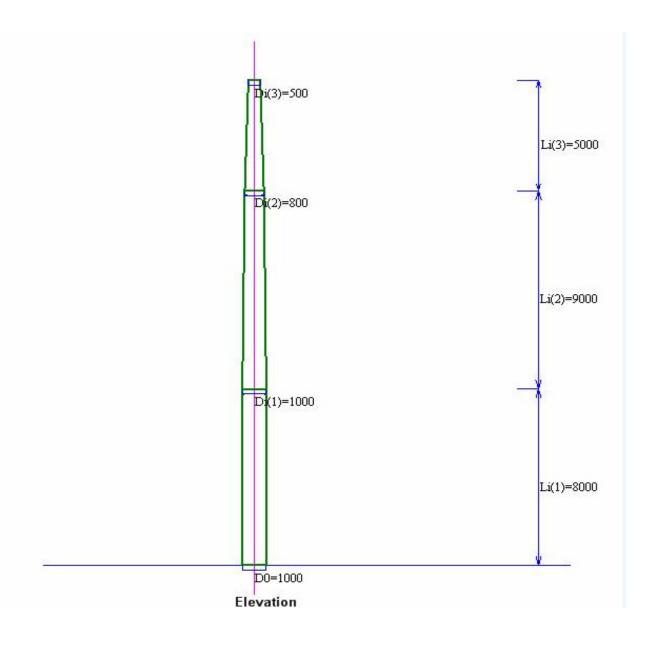

click link "Review Report"

Review Report

4. Review Tables

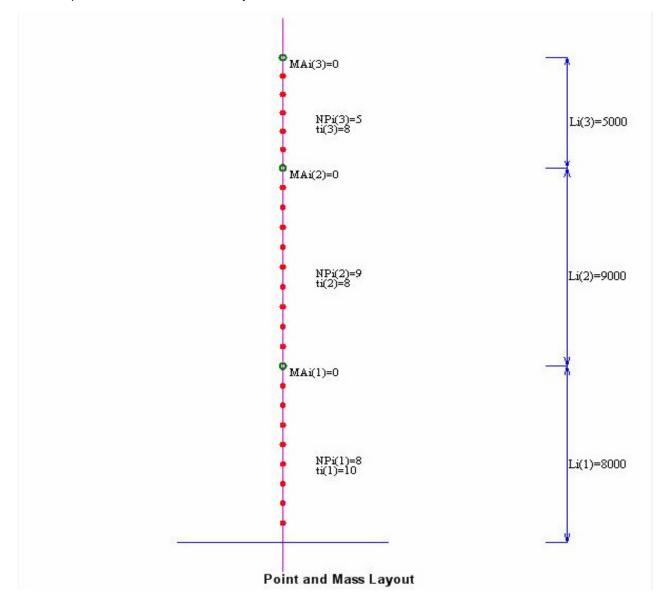

Tables at the lower part of the page are internal reports for your review and checking

You can select one from the following list

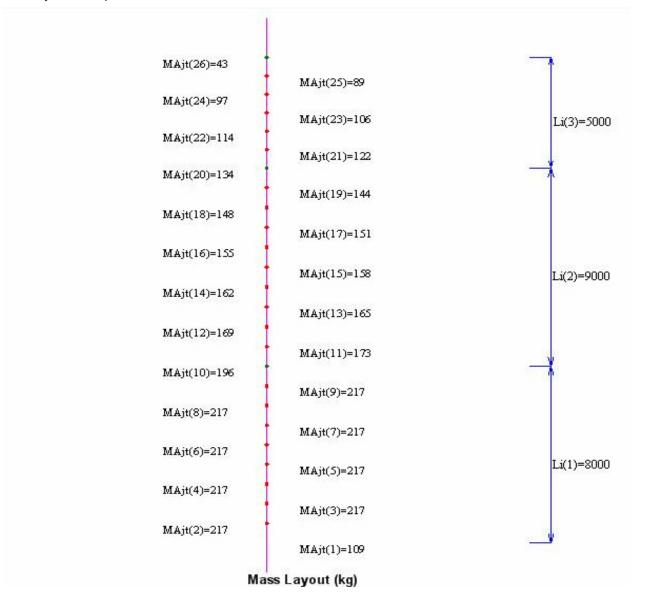


Elevation	D(×)	Frequency (HZ)																								
(m)	(m)	1	2	3	4	- 6	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	26
22.0	0.5	0.36	0.72	1.08	1.44	1.8	2.16	2.52	2.88	4.5	- 5	5.5	6	6.5	7	7.5	8	8.5	9	9.5	10	10.5	11	11.5	12	12.5
21.17	0.55	0.32	0.65	0.97	1.3	1.62	1.94	2.27	2.59	4.05	4.5	4.95	5.4	5.85	6.3	6.75	7.2	7.65	8.1	8.55	9	9.45	9.9	10.35	10.8	11.25
20.33	0.6	0.29	0.59	0.88	1.18	1.47	1.76	2.06	3.27	3.67	4.08	4.49	4.9	5.31	5.72	6.12	6.53	6.94	7.35	7.76	8.17	8.57	8.98	9.39	9.8	10.21
19.5	0.65	0.27	0.53	0.8	1.06	1.33	1.6	1.86	2.95	3.32	3.69	4.08	4.43	4.8	5.17	5.54	5.91	6.28	6.65	7.02	7.38	7.75	8.12	8.49	8.86	9.23
18.67	0.7	0.24	0.49	0.73	0.98	1.22	1.47	2.38	2.71	3.05	3.39	3.73	4.07	4.41	4.75	5.09	5.43	5.77	8.11	8.45	6.79	7.13	7.46	7.8	8.14	8.48
17.83	0.76	0.23	0.46	0.68	0.9	1.13	1.35	2.19	2.51	2.82	3.13	3.45	3.76	4.07	4.39	4.7	5.01	5.33	5.64	5.95	6.27	6.58	6.89	7.21	7.52	7.83
17.0	0.8	0.21	0.42	0.63	0.84	1.05	1.26	2.03	2.33	2.62	2.91	3.2	3.40	3.78	4.07	4.36	4.65	4.94	5.23	5.52	5.81	6.1	6.39	6.68	6.97	7.27
16.1	0.82	0.2	0.4	0.6	0.8	1	1.2	1.94	2.22	2.5	2.77	3.05	3.33	3.61	3.88	4.16	4.44	4.72	4.99	5.27	5.55	5.83	6.1	6.38	6.66	6.94
15.2	0.84	0.19	0.39	0.58	0.77	0.96	1.61	1.88	2.14	2.41	2.68	2.95	3.21	3.48	3.75	4.02	4.29	4.55	4.82	5.09	5.36	5.62	5.89	6.16	6.43	6.7
14.3	0.86	0.18	0.37	0.55	0.74	0.92	1.53	1.79	2.05	2.3	2.58	2.81	3.07	3.33	3.58	3.84	4.09	4.35	4.8	4.86	5.12	5.37	5.63	5.88	6.14	8.4
13.4	0.88	0.18	0.36	0.53	0.71	0.89	1.48	1.73	1.98	2.22	2.47	2.72	2.97	3.21	3.48	3.71	3.95	4.2	4.45	4.7	4.94	5.19	5.44	5.68	5.93	6.18
12.5	0.9	0.17	0.34	0.52	0.69	0.88	1.43	1.67	1.91	2.15	2.39	2.63	2.87	3.11	3.34	3.58	3.82	4.08	4.3	4.54	4.78	5.02	5.26	5.49	5.73	5.97
11.6	0.92	0.16	0.33	0.49	0.66	0.82	1.37	1.6	1.83	2.05	2.28	2.51	2.74	2.97	3.2	3.42	3.65	3.88	4.11	4.34	4.57	4.79	5.02	6.25	5.48	5.71
10.7	0.94	0.16	0.32	0.48	0.64	0.79	1.32	1.55	1.77	1.99	2.21	2.43	2.65	2.87	3.09	3.31	3.53	3.75	3.97	4.19	4.41	4.64	4.86	5.08	5.3	5.52
9.8	0.96	0.15	0.31	0.46	0.62	0.77	1.28	1.49	1.71	1.92	2.14	2.35	2.56	2.78	2.99	3.2	3.42	3.63	3.84	4.06	4.27	4.48	4.7	4.91	5.13	5.34
8.9	0.98	0.15	0.29	0.44	0.59	0.73	1.22	1.43	1.63	1.84	2.04	2.24	2.45	2.65	2.86	3.06	3.27	3.47	3.67	3.88	4.08	4.29	4.49	4.69	4.9	5.1
8.0	1.0	0.14	0.28	0.43	0.57	0.71	1.18	1.38	1.58	1.78	1.98	2.17	2.37	2.57	2.77	2.96	3.16	3.36	3.56	3.75	3.95	4.15	4.34	4.54	4.74	4.94
7.11	1.0	0.14	0.28	0.42	0.56	0.7	1.17	1.37	1.58	1.75	1.95	2.14	2.34	2.54	2.73	2.92	3.12	3.32	3.51	3.7	3.9	4.09	4.29	4.49	4.68	4.88
6.22	1.0	0.14	0.27	0.41	0.66	0.68	1.14	1.33	1.52	1.71	1.9	2.09	2.28	2.47	2.66	2.85	3.04	3.23	3.42	3.61	3.8	3.99	4.18	4.37	4.56	4.76
5.33	1.0	0.14	0.27	0.41	0.54	0.68	1.13	1.31	1.5	1.69	1.88	2.06	2.25	2.44	2.63	2.81	3	3.19	3.38	3.56	3.75	3.94	4.13	4.31	4.5	4.69
4.44	1.0	0.13	0.27	0.4	0.53	0.67	0.8	1.29	1.48	1.66	1.85	2.04	2.22	2.4	2.59	2.78	2.96	3.14	3.33	3.52	3.7	3.88	4.07	4.26	4.44	4.63
3.56	1.0	0.13	0.26	0.39	0.52	0.65	0.78	1.26	1.44	1.62	1.8	1.98	2.16	2.34	2.52	2.7	2.88	3.06	3.24	3.42	3.6	3.78	3.96	4.14	4.32	4.5
1.78	1.0	0.13	0.26	0.38	0.51	0.64	0.77	1.24	1.42	1.6	1.77	1.95	2.13	2.31	2.48	2.66	2.84	3.02	3.19	3.37	3.55	3.73	3.9	4.08	4.26	
	1.0	0.13		0.38	0.5	0.63		1.23	1.4	1.58	1.75		2.1		2.45	2.63	2.8	2.97	3.15	3.33	3.5		3.85	4.03	4.2	4.38
0.89	1.0	0.12	0.24	0.37	0.49	0.61	0.73	1.19	1.36	1.53	1.7	1.87	2.04	2.21	2.38	2.55	2.72	2.89	3.06	3.23	3.4	3.57	3.74	3.91	4.08	4.25
0	1.0	0.12	0.24	0.36	0.48	0.6	0.72	1.17	1.34	1.51	1.67	1.84	2.01	2.18	2.35	2.61	2.68	2.85	3.02	3.18	3.35	3.52	3.68	3.85	4.02	4:19

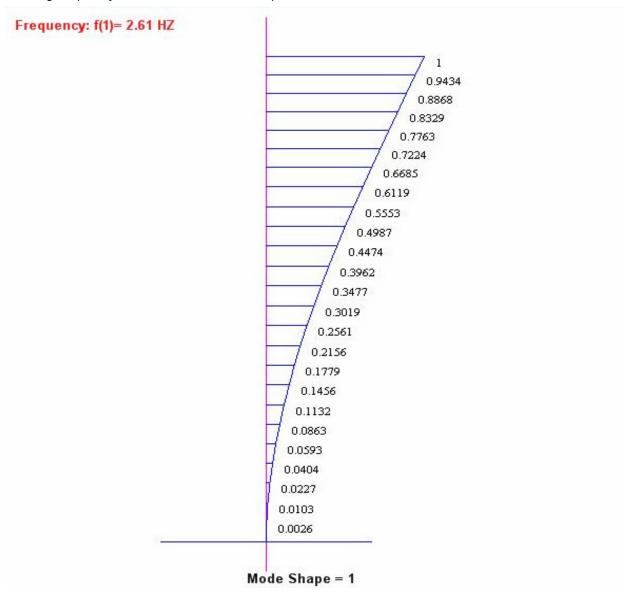
5. Review Sketches



1). Elevation


2). Point and Mass Layout

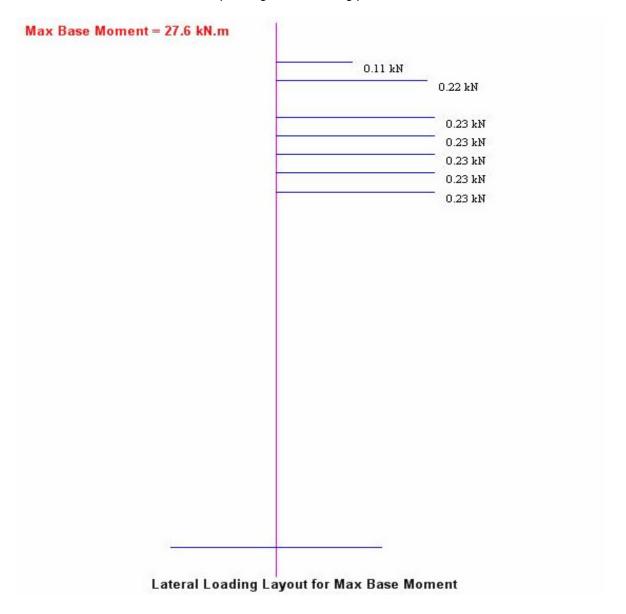
additional points and additional mass layout


3). Final Mass Layout

Mass Layout at all points

4). Mode Shape

Vibrating frequency and normalized mode shape


5). Maximum Base Shear

Maximum base shear and corresponding lateral loading profile

6). Maximum Base Moment

Maximum base moment and corresponding lateral loading profile

